ФАЗОВЫЕ РАВНОВЕСИЯ ПРИ ПАРООБРАЗОВАНИИ In₂O₃ В ПРИСУТСТВИИ Pt ПО ДАННЫМ ВЫСОКОТЕМПЕРАТУРНОЙ МАСС-СПЕКТРОМЕТРИИ

Смирнов А.С., <u>Грибченкова Н.А.</u>, Алиханян А.С.

Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва

Работа была проведена с целью изучения влияния благородных металлов на процессы парообразования оксидов, содержащих в насыщенном паре металл как один из основных компонентов. Исследование совместного парообразования \ln_2O_3 в присутствии Pt выполнено эффузионным методом Кнудсена в сочетании с масс-спектральным анализом газовой фазы на высокотемпературном масс-спектрометре в изотермических условиях при 1550 К. Эффузионный эксперимент проводили до полного испарения навески \ln_2O_3 , помещенной вместе с платиновой фольгой в кварцевую эффузионную камеру.

Фазовый состав образца

Начальный: [Pt+ln₂O₃] Конечный: [Pt₃ln+ln₂O₃]

Образование и состав интерметаллида Pt₃In установлены на основании РФА, весового (x(In) = 24.7%) и элементного анализа (x(In) = 27.24%).

Pt_f_2.brml (Merge)

DF 00-050-1615 In Pt3 Yixunite

Изменение парциальных давлений компонентов пара над \ln_2O_3 в присутствии Pt. p(ln)[ln₂O₃], p(ln₂O)[ln₂O₃], p(O₂)[ln₂O₃] – значения парциальных давлений компонентов пара чистого ln₂O₃.

Гетерогенные равновесия в эффузионной камере

$\ln_2 O_3(\tau) = 2\ln(r) + 3/2O_2$	(1)
$\ln_2 O_3(\tau) = \ln_2 O(r) + O_2$	(2)
$\ln_2 O(r) = 2\ln(r) + 1/2O_2$	(3)
1/3In ₂ O ₃ (т) + 4/3In(г) = In ₂ O(г)	(4)
$Pt(\tau) + xIn(r) = Pt(In)_x(\tau)$	(5)
$Pt(T) + x/2In_2O_3(T) = Pt(In)_x(T) + 3/2O_2$	(6)

Поперечный срез платиновой фольги (SEM). Распределение элементов (Pt – синий, In – красный) вдоль линии сканирования (EDS)

Константы равновесия и энтальпии реакций, полученные в системе In-O-Pt и для чистого In₂O₃*

t _{эксп} , мин	К° _р (1)	К° _р (2)	К° _р (3)	К° _р (4)
10	7.58E-12	1.04E-20	1.37E-9	4.07E6
66	7.73E-12	9.72E-21	1.26E-9	4.89E6
129	7.62E-12	1.02E-20	1.34E-9	4.26E6
176	8.23E-12	1.09E-20	1.33E-9	4.67E6
236	8.06E-12	8.52E-21	1.06E-9	7.21E6
356	8.49E-12	8.98E-21	1.06E-9	7.60E6
416	9.11E-12	9.67E-21	1.06E-9	8.10E6
476	1.09E-11	1.08E-20	9.93E-10	1.10E7
536	1.25E-11	1.42E-20	1.13E-9	9.75E6
596	1.08E-11	1.13E-20	1.05E-9	9.75E6
656	1.23E-11	1.15E-20	9.39E-10	1.39E7
689	1.57E-11	1.46E-20	9.25E-10	1.84E7
735	1.67E-11	1.76E-20	1.06E-9	1.49E7
779	1.24E-11	1.31E-20	1.06E-9	1.11E7
792	1.46E-11	1.54E-20	1.06E-9	1.31E7
834	1.35E-11	1.09E-20	8.05E-10	2.09E7
863	1.33E-11	1.41E-20	1.06E-9	1.19E7
891	1.60E-11	2.97E-20	1.86E-9	4.63E6
923	1.00E-11	1.06E-20	1.06E-9	8.97E6
979	1.65E-11	1.75E-20	1.06E-9	1.48E7
In ₂ O ₃	1.47E-11	2.00E-20	1.35E-9	8.00E6

t _{эксп} , мин	$\Delta_{\rm r} H^{\circ}_{0}$ (1)	$\Delta_{\rm r} H^{\circ}_{0}$ (2)	Δ _r H° ₀ (3)	$\Delta_{\rm r} H^{\circ}_{0}$ (4)
66	900.7	1406.8	506.0	-37.1
129	902.5	1408.6	506.2	-36.6
176	901.5	1407.7	506.3	-37.0
236	901.7	1410.9	509.2	-38.9
356	901.0	1410.2	509.2	-39.1
416	900.1	1409.3	509.2	-39.4
779	896.2	1405.4	509.2	-40.7
792	889.5	1396.0	506.4	-41.1
834	890.5	1400.5	509.9	-43.1
863	893.7	1402.0	508.3	-40.9
891	892.9	1394.8	501.9	-37.0
923	900.4	1410.5	510.1	-40.0
979	896.8	1408.8	511.9	-42.4
In ₂ O ₃	889.2±12.7	1394.6±14.6	505.3±12.4	-40.4±9.9

* Smirnov AS, Gribchenkova NA, Alikhanyan AS. Vaporization thermodynamics of In2 O3 by Knudsen effusion mass spectrometry. The standard enthalpy of formation of In2 O(g). Rapid Commun Mass Spectrom. 2021 Aug 15;35(15):e9127. doi: 10.1002/rcm.9127.

Непротиворечивость полученных величин энтальпий реакций парообразования ln₂O₃ методом расчета «по третьему закону термодинамики» при исследовании ln₂O₃ в присутствии Pt и чистого ln₂O₃ обусловлена сохранением в эффузионной камере Кнудсена состояния системы ln-O-Pt близкого к равновесному (a(ln₂O₃) близка к 1). При этом абсолютные значения парциальных давлений компонентов пара существенно отличаются от величин, соответствующих чистому ln₂O₃. Таким образом, при высокотемпературных исследованиях в неокислительной атмосфере, Pt и подобные металлы не являются инертными относительно оксидов, содержащих в насыщенном паре металл, а получаемые в таких условиях результаты могут быть некорректно интерпретированы.

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 21-13-00086)