

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ТЕПЛОЕМКОСТИ В ИНТЕРВАЛЕ 80 – 370 К И ПАРАМЕТРЫ ФАЗОВЫХ ПЕРЕХОДОВ ФЕРРОМОЛИБДАТА СТРОНЦИЯ, ДОПИРОВАННОГО БАРИЕМ

<u>Степурко Е.Н.</u>¹, Блохин А.В.¹, Мартинович М.В.², Демьянов С.Е.²,

Соколова А.Д.¹, Черепенников М.Б.¹, Каланда Н.А.²

¹ Белорусский государственный университет, Минск

²ГО «НПЦ НАН Беларуси по материаловедению», Минск

e-mail: stepurkoelena@gmail.com

Методом адиабатической калориметрии получены значения теплоемкости в интервале (80 – 370) К для ряда ферромолибдатов стронция и бария составов $Sr_{2-x}Ba_xFeMoO_{6-\delta}$ с x = 0.8 (I), x = 1.0 (II), x = 1.4 (III) и x = 1.8 (IV).

Поликристаллические образцы Sr_{2-x}Ba_xFeMoO_{6-δ} синтезировали методом твердофазного синтеза из исходных реагентов SrCO₃, BaCO₃, Fe_2O_3 , MoO_3 марки «ОСЧ». Помол И перемешивание стехиометрической смеси исходных реагентов проводились в вибромельнице в этиловом спирте в течение 3 часов. Полученные смеси сушились при температуре 350 К, прессовались в таблетки диаметром 10 мм, толщиной 4-5 мм и отжигались в политермическом режиме при температурах (300-1470) К в потоке аргона и скорости нагрева 2 К·мин⁻¹ с последующей закалкой при комнатной температуре. Согласно данным рентгенофазового анализа установлено, что полученные образцы имели однофазный состав.

Таблица. Термодинамические параметры фазовых переходов второго рода образцов Sr_{2-x}Ba_xFeMoO_{6-δ}

Образец	Область перехода, К	<i>Т</i> _с , К	∆ _{ex} <i>H</i> , Дж·моль ⁻¹	Δ _{ex} S, Дж·моль ⁻¹ ·К ⁻¹
Sr _{1.0} Ba _{1.0} FeMoO ₆	300 - 368	347 ± 1	59 ± 1	0.17 ± 0.01
Sr _{0.6} Ba _{1.4} FeMoO ₆	280 - 362	331 ± 1	112 ± 1	0.34 ± 0.01
Sr _{0.2} Ba _{1.8} FeMoO ₆	238 - 350	313 ± 1	362 ± 2	1.19 ± 0.01
$Ba_{2}FeMoO_{6}[1]$	230 - 340	300 ± 1	509 ± 3	1.76 ± 0.01

[1] Kutuzau M.D., Blokhin A.V., Yurkshtovich Y.N., Demyanov S.E., Kalanda N.A., Yarmolich M.V., Serdechnova M. Structural, magnetic and thermodynamic properties of barium ferromolybdate // Philosophical Magazine. – 2021. – V. 101 (14) – P. 1699-1708.

Работа выполнена в рамках задания 1.1 ГПНИ «Материаловедение, новые материалы и технологии» (2021-2025 гг.).

Теплоемкости образцов $Sr_{2-x}Ba_xFeMoO_{6-\delta}$ в интервале 80 – 370 К измерены в полуавтоматическом вакуумном адиабатическом калориметре ТАУ-10 (изготовленном в АОЗТ «Термис», г. Менделеево Московской области). Измерения проводились в автоматическом режиме и контролировались системой, состоящей из компьютера и блока аналогового регулирования и сбора данных АК-6.25. Температура измерялась железо-родиевым термометром сопротивления ($R_0 \approx 50$ Ом), откалиброванным по МТШ-90 во ВНИИФТРИ (г. Москва). Погрешность измерения теплоемкости не превышала ± 0.4 %. Вклад теплоемкости образца в суммарную теплоемкость заполненной калориметрической ампулы составлял не менее 25 %.

окружности – $Sr_{1.2}Ba_{0.8}FeMoO_{6-\delta}$ (I), квадраты – $Sr_{1.0}Ba_{1.0}FeMoO_{6-\delta}$ (II), треугольники – $Sr_{0.6}Ba_{1.4}FeMoO_{6-\delta}$ (III), ромбы – $Sr_{0.2}Ba_{1.8}FeMoO_{6-\delta}$ (IV) Рисунок 3 – Температурная зависимость молярной теплоемкости ферромолибдатов стронция и бария в интервале (240–370) К

Для II, III и IV при T > 240 К обнаружены воспроизводимые аномалии, обусловленные переходом оксидов ферромагнитного ИЗ В (фазовые переходы второго рода). парамагнитное состояние Определено, что с уменьшением содержания бария в образце эти аномалии становятся менее выраженными, а кривые теплоемкости в области перехода – более пологими (Рисунок 3). Для I наблюдается только монотонное увеличение теплоемкости с ростом температуры. Молярные теплоемкости образцов II, III и IV увеличиваются при заданной температуре с увеличением в них содержания бария.

Рисунок 1 – Температурная зависимость удельной теплоемкости $Sr_{2-x}Ba_xFeMoO_{6-\delta}$ с x = 0.8 (I, окружности) и x = 1.0 (II, квадраты) в интервале 80 - 370 К

Рисунок 2 – Температурная зависимость удельной теплоемкости $Sr_{2-x}Ba_xFeMoO_{6-\delta}$ с x = 1.4 (III, треугольники) и x = 1.8 (IV, ромбы) в интервале 80 - 370 К

квадраты – $Sr_{1.0}Ba_{1.0}FeMoO_6$ (II), треугольники – $Sr_{0.8}Ba_{1.4}FeMoO_{6-\delta}$ (III), ромбы – $Sr_{0.2}Ba_{1.8}FeMoO_{6-\delta}$ (IV)

Рисунок 4 – Температурные зависимости избыточной молярной теплоемкости ферромолибдатов стронция и бария в области их фазовых переходов

На основе анализа температурных зависимостей теплоемкости сложных оксидов II, III и IV определены термодинамические параметры их фазовых переходов (температуры Кюри, избыточные энтальпии и энтропии), представленные в Таблице. Избыточные теплоемкости в области переходов, представленные на Рисунке 4, найдены как разности между опытными значениями теплоемкости и регулярными составляющими теплоемкости образцов. Избыточные энтальпии и энтропии фазовых переходов найдены интегрированием избыточной теплоемкости и приведенной избыточной теплоемкости соответственно от температуры. Установлено, что температуры Кюри уменьшаются, а избыточные энтальпии и энтропии бария (*x*) в образцах.

в образцах Sr_{2-x}Ba_xFeMoO_{6-б}

Рисунок 6 – Зависимость избыточной энтальпии фазового перехода от содержания бария (*x*) в образцах Sr_{2-x}Ba_xFeMoO_{6-δ}