

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ЭТИЛ-2-ЦИАНО-3-(2-ФУРИЛ)-2-ПРОПЕНОАТА И ЕГО БЕНЗОЛ ПРОИЗВОДНОГО

<u>Алейникова А.А.</u>, Блохин А.В., Орлович А.Ю., Черепенников М.Б. Белорусский государственный университет, Минск, Беларусь <u>sashaleinikova@gmail.com</u>

Производные фурана являются биологически активными соединениями, обладают цитотоксическими и антиспазмолитическими свойствами, что актуализирует необходимость определения термодинамических свойств данного класса соединений. Полученные данные могут найти применение при решении задач оптимизации производственных процессов, при валидации экспериментальных значений. В настоящей работе представлено исследование термодинамических свойств этил-2-циано-3-(2-фурил)-2-пропеноата(I) и его бензол производного(II).

1 – угольный адсорбер; 2 – вакуумный стакан;

- 3 нижняя крышка адиабатического экрана;
- 4 адиабатический экран;
- 5 калориметр-контейнер;
- 6 основной нагреватель адиабатического экрана;
- 7 железо-родиевый термометр
- сопротивления;
- 8 нагревательная гильза;
- 9 нейлоновые нити;
- 10 вспомогательный (градиентный)
- нагреватель адиабатической оболочки;
- 11 медный фланец;
- 12 основная термопара
- (Cu+0.1%Fe)/хромель;
- 13 нагреватель гильзы;
- 14 вспомогательная (градиентная) термопара (Cu+0.1%Fe)/ хромель.

Рисунок 1 – Принципиальная схема калориметра ТАУ-10

Теплоемкости образцов I (m = 0,8209 г) и II (m = 0,8193 г) в конденсированном состоянии в интервале (80 - 370) К измерены в полуавтоматическом вакуумном адиабатическом калориметре TAУ-10 (изготовленном в AO3T «Термис», г. Менделеево Московской области) в ходе 5 и 1 независимых серий соответственно. Погрешность измерения теплоемкости не превышает ± 0.4 %, воспроизводимость значений – не менее ± 0.1 %. Экспериментальные значения теплоемкости I и II

Стандартные энтальпии образования исследуемых соединений в состоянии идеального газа при T = 298,15 К получены в рамках метода изодесмических реакций. Оптимизация геометрий молекул и расчёт наборов частот нормальных колебаний выполнены на уровне теории DFT B3LYP/6–311G+(3df, 2p), расчет энергий наиболее устойчивых конформаций проведен с помощью композитного метода G4 для I и G3MP2 для II. Средневзвешенные значения стандартной энтальпии образования I и II в состоянии идеального газа составили –(233,6 ± 1,0) кДж·моль⁻¹ и –(119,5 ± 11,0) кДж·моль⁻¹ соответственно и согласуются в пределах погрешностей с опытными значениями –(230,0 ± 8,5) кДж·моль⁻¹ и –(118,7 ± 6,5) кДж·моль⁻¹.

Таблица 2. Экспериментальные значения	ия энтальпий образования участников И,	ДP
и рассчитанная внутре	енняя энергии молекул.	

N⁰	Вещество	Е ₂₉₈ , Хартри	Δ _f H [°] _{298,(г)} , Дж/моль
1	Этил-2-циано-3-(2-фурил)-2- пропеноат	- 628,5	-233,4 ± 8,6
2	Этилен	- 67,9	52,5 ± 0,4
3	Пропилен	- 104,3	20,0 ± 0,8
4	Бутадиен-1,3	- 140,8	110,0 ± 1,1
5	2-Винилфуран	- 288,3	27,8 ± 3,6
6	Акрилонитрил	- 157,0	180,6 ± 1,7
7	Этилакрилат	- 321,5	- 331,4
8	(Z)-2-Бутеннитрил	- 192,6	134,1 ± 1,0
9	Этилметакрилат	- 356,6	-375,6 ± 2,5
10	2-Фуранакрилонитрил	- 377,7	158,6 ± 1,7
11	2-Метилфуран	- 252,1	-76,4 ± 1,2
12	2-Фураннитрил	- 321,8	106,8 ± 1,1
13	Этил-2-циано-[3-(5-фенил)-2-фуран] -2-пропеноат	- 845,6	-88,7 ± 6,6
14	2-метил-5-фенилфуран-3-карбоновая кислота	- 650,7	-342,1 ± 9,97
15	фуран-2-карбоновая кислота	- 398,3	-411,84 ± 1,54
16	Фуран	- 217,2	- 34,9 ± 0,7

Таблица 3. Стандартные энтальпии изодесмических реакций и стандартные энтальпии образования этил-2-циано-[3-(5-фенил)-2-фуран]-2-пропеноата в газообразном состоянии.

представлены на рисунках 2 и 3. На кривой температурной зависимости теплоемкости I обнаружена аномальная область, обусловленная плавлением вещества в интервале (345 - 359) К. Температура плавления $T_{\rm fus} = (364,09 \pm 0,02)$ К и чистота образца $x = (99,72 \pm 0,02)$ % мол. определены методом фракционного плавления. Энтальпия и энтропия плавления I оказались равными $\Delta_{\rm fus}H = (29.35 \pm 0.02)$ кДж·моль⁻¹ и $\Delta_{\rm fus}S = (80.61 \pm 0.06)$ Дж·моль⁻¹·К⁻¹ соответственно. На основании сглаженных значений теплоемкости и параметров плавления I рассчитаны стандартные термодинамические функции I и II в конденсированном состоянии в интервале (80 - 370) К.

конденсированном состоянии

Стандартные термодинамические свойства I и II в состоянии идеального газа в температурном интервале (0 – 1000) К рассчитаны с использованием методов статистической термодинамики, их значения при T = 298,15 К приведены в Таблице 1.

Таблица 1. Стандартные термодинамические свойства I и II в состоянии идеального газа при 298.15 К

Соединение	$C_{p,m}^{\circ}$	$\Delta_0^T H_m^\circ/T$	$\Delta_0^T S_m^\circ$	$\Delta_0^T G_m^\circ/T$
	Дж·моль-1·К-1			
Ι	250,8 ± 1,3	127,7 ± 0,6	207,5 ± 1,0	79,86 ± 0,40
II	$266,6 \pm 1,1$	$243,4 \pm 1,0$	$137,5 \pm 0,6$	$105,9 \pm 1,2$

N⁰	ИДР	Δ _r H _{298,15} кДж ∙ моль ^{−1}	Δ _f H [°] _{298,15} кДж ∙ моль ^{−1}	
1	5+6+7=1+2+2	-8,28	-233,1	
2	5+8+7=1+2+3	1,70	-231,3	
3	5+6+9=1+2+3	0,331	-237,5	
4	5+8+9=1+3+3	10,3	-235,7	
5	12+4+7=1+2+2	-17,9	-233,9	
6	12+4+9=1+3+2	-9,33	-238,3	
7	10+9=1+3	9,45	-226,4	
8	11+4+8+9=1+3+3+3	26,3	-233,6	
	< Δ _f H [°] _{298,15} (г)> = −(233,6 ± 1,0) кДж · моль ^{−1}			

Таблица 4. Стандартные энтальпии изодесмических реакций и стандартные энтальпии образования этил-2-циано-3-(2-фурил)-2-пропеноата в газообразном состоянии.

N⁰	ИДР	Δ _r H [°] _{298,15} кДж ∙ моль ^{−1}	∆ _f Н _{298,15} кДж · моль ^{−1}	
1	14+16+5+6+7=13+2+2+15+11	-1,90	-115,8	
2	14+16+5+8+7=13+2+3+15+11	5,96	-122,8	
3	14+16+5+6+9=13+2+3+15+11	5,74	-121,6	
4	14+16+5+8+9=13+3+3+15+11	13,6	-128,5	
5	14+16+12+4+7=13+2+2+15+11	-11,1	-116,1	
6	14+16+12+4+9=13+3+2+15+11	-3,46	-121,9	
7	14+16+10+9=13+3+15+11	15,3	-110,0	
	< Δ _f H [°] _{298,15} (г)> = −(119,5 ± 11,0) кДж · моль ^{−1}			