Computational prediction of the electronic, thermodynamic and kinetic properties of new materials synthesized under high pressure M.V. Magnitskaya^{1,2*}, N.M. Chtchelkatchev¹, L.V. Kamaeva^{3,1}, A.V. Tsvyashchenko¹

> ¹Institute of High Pressure Physics, RAS, Troitsk, Russia *magnma@yandex.ru ³Udmurt Federal Research Center, UrB RAS, Izhevsk, Russia ²Lebedev Physical Institute, RAS, Moscow, Russia

Materials subjected to high pressures and temperatures sometimes change their properties unpredictably. Here, a metastable high-pressure phase of RhGe with a noncentrosymmetric crystal structure of the B20 type (SG $P2_13$) was studied both experimentally and by density-functional calculations.

Theoretically, we performed an evolutionary search for energetically favored polymorphs using the USPEX code and determined their stability regions on the P-T phase diagram in quasi-harmonic approximation (QHA).

The experiments included synthesis under high-pressure-high-temperature conditions and examination of the obtained samples by means of differential scanning calorimetry (DSC). Before and after DSC, the X-ray diffraction analysis (XRD) of observed phases was carried out and the microstructure of the samples was investigated.

Low-energy polymorphs of RhGe and its isovalent analogue RhSi: Evolutionary search (T=0)

RhGe: only B31 and B20 phases are presently known. Can the intermediate monoclinic phase (#14) be obtained experimentally?

SG #	Eat	Vat	$\rho=1/V_{at}$	t
62 (Pnma)	-6.4238	15.3813	0.0650	orth (B31) MnP
198 (P2 ₁ 3)	-6.3850	14.8812	0.0672	cub (B20) FeSi
$14 (P2_1/c)$	-6.3820	14.8002	0.0676	mon
64 (Cmca)	-6.3622	14.8229	0.0675	orth

RhSi: all four phases are known. The densest B2 phase(#221) is stable only at very high pressures ~100 GPa

SG #	Eat	Vat	$\rho=1/V_{at}$	Symmetry
62 (Pnma)	-6.816	14.008	0.0714	orth (B31) MnP
198 (P2 ₁ 3)	-6.798	13.272	0.0753	cub (B20) FeSi
$14 (P2_1/c)$	-6.783	13.546	0.0738	mon
221 (Pm3m)	-6.532	13.224	0.0756	cub (B2) CsCl

The results of calculations 1. B31-RhGe is a ground state. The denser B20-RhGe phase becomes stable from ~7 GPa.

DSC thermogram, comparison with equilibrium state diagram (ESD) and XRD patterns before and after DSC

2. As temperature increases, B20-RhGe forms at progressively lower pressures.

3. The monoclinic phase $P2_1/c$ (#14) is not realized in RhGe at moderate P.

Results of calorimetric studies

- Temperatures of observed effects are plotted in the ESD (blue circles •) for comparison

phases. Its properties depend on the preparation method and sample prehistory.